Adopting ZLD: Growing uptake at TPPs

The adoption of zero liquid discharge (ZLD) is gaining momentum. ZLD is a cutting-edge engineering approa­ch wherein the entire industrial and domestic wastewater can be reused after treatment/recycling without discharging even a drop of water outside the project boundary in natural waterbodies. It uses a method of concentration and th­er­mal evaporation to either reuse treated wastewater on site or reduce it to so­lids. No­tably, the Ministry of Environ­me­nt, Forest and Climate Change (MoEFCC) has mandated plants ins­tall­ed after January 1, 2017 to meet a limit of 2.5 m3 per MWh along with ZLD. By us­ing ZLD, the discharged water can be returned to the facility.

Reverse osmosis (RO), electrodialysis, evaporation, lime-soda ash softening, and other cutting-edge treatment methods are frequently used in ZLD systems. It typically comprises three components – pretreatment (for chemical and biological processes), RO (for the memb­rane process), and evaporator and crystalliser (for the thermal process). Water from the thermal power plant (TPP) is sent to the wastewater treatment facility during the ZLD pro­cess, where it is filtered using membrane technologies such as ultrafiltration. Reusing the separated water produces a concentrate made of the polluted str­e­am, which is then transported into a brine concentrator (a mechanical evaporator) using a combination of heat and vapour compression. Water that has evaporated is retrieved and reused.

Major systems of ZLD

Ash water recirculation system (AWRS) and toe drain recirculation system (TDRS): The AWRS and TDRS are ins­ta­lled to optimise water consumption in a clo­s­ed cycle and achieve ZLD from ash po­nds. The effluent from an ash pond is recirculated to the plant for further ash slurry makeup and again sluiced to the ash pond. With this, 70 per cent of the ash handling water is recirculated to the plant from the ash pond resulting in marginal makeup of 200-300 m3  per hour for a typical 2×660 MW power station.

Liquid waste treatment plant (LWTP): The effluent generated from various sources in the plant, such as coal hand­ling, is collected in the central monitoring basin of the LWTP. The collected ef­fluent is analysed for quality in keeping with the prescribed norms and reused in suitable applications.

Separate drainage system for storm wa­ter and process water: Separating storm water from process water is useful for se­gregating pure and contaminated water, thus, saving fresh water and re­du­cing purification costs. To this end, collecting and carrying the pristine storm water through separate storm water drains and ensuring that it does not get mixed with sewage water or industrial waste water is useful. In the modified system being implemented by NTPC, two independent drainage systems are constructed and these run concurrently for the collection and transportation of plant effluent and storm water runoff separately. With this system, uncontaminated storm water can be used as a top-up water source, to reduce load on sewerage/effluent treatment plants during periods of wet weather and optimise performance of the wastewater treatment plant.

Treated sewage water: The treated water can be used in various processes in the plant. These include horticulture (whe­rein most of the treated water is consuming thereby saving a huge quantum of fresh water), AWRS and flushing water for residential and non-residential units. Besides this, by making use of the treated sewage water from the municipality in the vicinity of power plants (within 50 km), a great amount of fresh water can be saved.

Conclusion

The main benefit of ZLD is that it redu­ces the negative environmental effects of energy production. The factors driving the uptake of ZLD are water scarcity and the rising concerns over the effects of to­xic discharges on the environment. Se­ve­ral utilities are taking steps for re­ducing water discharge th­rough recycling, reuse as well as ZLD. It is essential to ensure that the toxic solid waste generated as a by-product of the ZLD process is disposed of in an environmentally safe ma­nner. Notably, one of the biggest power producers in the country, NTPC has adopted ZLD at its 16 power stations. Additionally, it inten­ds to make 20 more stations ZLD compatible.

Net, net, using the ZLD procedure ensu­res water conservation and adherence to the most recent statutory requirements for TPP water use as announced by the MoEFCC. It also offers a number of ad­vantages for TPP operators and is likely to gain traction, going ahead.